Initial commit

This commit is contained in:
Forrest Zhu 2025-03-15 21:32:56 +08:00
commit 00392d28e3
14 changed files with 1143 additions and 0 deletions

2
.gitattributes vendored Normal file
View File

@ -0,0 +1,2 @@
# Auto detect text files and perform LF normalization
* text=auto

201
LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Binary file not shown.

80
README.md Normal file
View File

@ -0,0 +1,80 @@
# Power BI Measure Call Graph
A Flask web application that visualizes the dependency relationships between measures in a Power BI / Analysis Services model.
## Features
- Connect to Analysis Services models
- Extract measures and their DAX expressions
- Parse DAX expressions to determine dependencies between measures
- Visualize the call graph with an interactive D3.js visualization
- Search for specific measures
- Click on measures to highlight dependencies
- Hover over measures to see their DAX expressions
## Requirements
- Python 3.7+
- Microsoft Analysis Services ODBC driver (MSOLAP)
- Access to a Power BI / Analysis Services model
## Installation
1. Clone this repository:
```
git clone https://github.com/yourusername/pbi-measure-callgraph.git
cd pbi-measure-callgraph
```
2. Create a virtual environment (optional but recommended):
```
python -m venv venv
venv\Scripts\activate # Windows
source venv/bin/activate # macOS/Linux
```
3. Install the required packages:
```
pip install -r requirements.txt
```
## Usage
1. Start the Flask application:
```
python app.py
```
2. Open your web browser and navigate to:
```
http://localhost:5000
```
3. Enter your Analysis Services server and database information and click "Connect"
4. Once connected, the call graph will be displayed with all measures from your model
5. Interact with the graph:
- Click on a measure to highlight its dependencies
- Hover over a measure to see its DAX expression
- Use the search box to find specific measures
- Use the mouse wheel to zoom in/out
- Drag the graph to pan
- Click the "Reset View" button to center the graph
## How It Works
1. **Connection**: The application connects to your Analysis Services model using the MSOLAP ODBC driver
2. **Measure Extraction**: It retrieves all visible measures and their DAX expressions
3. **Dependency Analysis**: The DAX parser analyzes each expression to identify references to other measures
4. **Visualization**: The D3.js force-directed graph visualizes the dependencies between measures
## Troubleshooting
- **Connection Issues**: Ensure you have the MSOLAP driver installed and that you have access to the specified server and database
- **Missing Measures**: Only visible measures are included in the graph
- **Incorrect Dependencies**: The DAX parser uses a simplified approach to identify measure references and may not catch all complex scenarios
## License
MIT

Binary file not shown.

Binary file not shown.

61
app.py Normal file
View File

@ -0,0 +1,61 @@
from flask import Flask, render_template, jsonify, request
import json
import os
from model_connector import ModelConnector
from dax_parser import DaxParser
app = Flask(__name__)
# Initialize the model connector and DAX parser
model_connector = None
dax_parser = DaxParser()
@app.route('/')
def index():
"""Render the main page."""
return render_template('index.html')
@app.route('/connect', methods=['POST'])
def connect():
"""Connect to the Analysis Services model."""
global model_connector
data = request.json
server = data.get('server')
database = data.get('database')
try:
model_connector = ModelConnector(server, database)
return jsonify({'success': True, 'message': 'Connected successfully'})
except Exception as e:
return jsonify({'success': False, 'message': str(e)})
@app.route('/get_measures')
def get_measures():
"""Get all measures from the connected model."""
if not model_connector:
return jsonify({'success': False, 'message': 'Not connected to a model'})
try:
measures = model_connector.get_measures()
return jsonify({'success': True, 'measures': measures})
except Exception as e:
return jsonify({'success': False, 'message': str(e)})
@app.route('/get_call_graph')
def get_call_graph():
"""Generate and return the call graph data."""
if not model_connector:
return jsonify({'success': False, 'message': 'Not connected to a model'})
try:
measures_df = model_connector.get_measures()
measures = measures_df.to_dict(orient="records")
graph = dax_parser.build_call_graph(measures)
return jsonify({'success': True, 'graph': graph})
except Exception as e:
return jsonify({'success': False, 'message': str(e)})
if __name__ == '__main__':
app.run(debug=True)

70
dax_parser.py Normal file
View File

@ -0,0 +1,70 @@
import re
class DaxParser:
"""Class to parse DAX expressions and build dependency graphs."""
def __init__(self):
"""Initialize the DAX parser."""
# Regular expression to match measure references in DAX
# This is a simplified pattern and may need refinement for complex DAX
self.measure_ref_pattern = r'\[([^\]]+)\]'
def extract_measure_references(self, dax_expression, all_measure_names):
"""
Extract references to other measures from a DAX expression.
Args:
dax_expression (str): The DAX expression to parse
all_measure_names (list): List of all measure names in the model
Returns:
list: Names of measures referenced in the expression
"""
if not dax_expression:
return []
# Find all potential measure references (anything in square brackets)
potential_refs = re.findall(self.measure_ref_pattern, dax_expression)
# Filter to only include actual measure names
# This helps avoid false positives like column references
measure_refs = [ref for ref in potential_refs if ref in all_measure_names]
return list(set(measure_refs)) # Remove duplicates
def build_call_graph(self, measures):
"""
Build a call graph of measure dependencies.
Args:
measures (list): List of measure dictionaries with 'name' and 'expression' keys
Returns:
dict: A graph representation with nodes and links
"""
# Extract all measure names
all_measure_names = [measure['name'] for measure in measures]
# Create nodes for the graph
nodes = [{'id': measure['name'], 'expression': measure['expression']} for measure in measures]
# Create links (dependencies) for the graph
links = []
for measure in measures:
source = measure['name']
expression = measure['expression']
# Find references to other measures in this expression
references = self.extract_measure_references(expression, all_measure_names)
# Add links for each reference
for target in references:
links.append({
'source': source,
'target': target
})
return {
'nodes': nodes,
'links': links
}

89
model_connector.py Normal file
View File

@ -0,0 +1,89 @@
from sys import path
path.append('D:\\Personal_Files\\document\\GitHub\\Test\\MSNET')
import pyadomd
import pandas as pd
class ModelConnector:
"""Class to connect to and retrieve data from Analysis Services models."""
def __init__(self, server, database):
"""
Initialize the connection to the Analysis Services model.
Args:
server (str): The server name or IP address
database (str): The database name
"""
self.server = server
self.database = database
# self.connection_string = f"Provider=MSOLAP;Data Source={server}"
self.connection_string = f"Provider=MSOLAP;Data Source=localhost:56195"
self.connection = None
self.connect()
def connect(self):
"""Establish a connection to the Analysis Services model."""
try:
self.connection = pyadomd.Pyadomd(self.connection_string)
self.connection.open()
return True
except Exception as e:
raise Exception(f"Failed to connect to the model: {str(e)}")
def execute_query(self, query):
"""
Execute a DAX or MDX query against the model.
Args:
query (str): The DAX or MDX query to execute
Returns:
pandas.DataFrame: The query results
"""
if not self.connection:
self.connect()
try:
with self.connection.cursor().execute(query) as conn:
rows = conn.fetchall()
df = pd.DataFrame(rows, columns=[col[0] for col in conn._description])
return df
except Exception as e:
raise Exception(f"Failed to execute query: {str(e)}")
def get_measures(self):
"""
Retrieve all measures from the model.
Returns:
list: A list of dictionaries containing measure information
"""
# DMV query to get all measures
query = """
SELECT
[MEASURE_NAME] as [name],
[EXPRESSION] as [expression],
[MEASURE_CAPTION] as [caption],
[MEASURE_DISPLAY_FOLDER] as [display_folder],
[DESCRIPTION] as [description]
FROM $SYSTEM.MDSCHEMA_MEASURES
WHERE MEASURE_IS_VISIBLE
"""
try:
df = self.execute_query(query)
return df if not df.empty else []
except Exception as e:
raise Exception(f"Failed to retrieve measures: {str(e)}")
if __name__ == '__main__':
# Example usage
server = 'localhost:56195'
database = 'Exteranl All Channel'
model_connector = ModelConnector(server, database)
measures = model_connector.get_measures()
print(measures) # List of measure dictionaries

3
requirements.txt Normal file
View File

@ -0,0 +1,3 @@
Flask==2.3.3
pyodbc==4.0.39
pandas==2.2.3

188
static/css/style.css Normal file
View File

@ -0,0 +1,188 @@
/* Global styles */
* {
box-sizing: border-box;
margin: 0;
padding: 0;
}
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.6;
color: #333;
background-color: #f5f5f5;
}
.container {
max-width: 1400px;
margin: 0 auto;
padding: 20px;
}
header {
text-align: center;
margin-bottom: 30px;
}
h1 {
color: #0078d4;
margin-bottom: 10px;
}
h2 {
color: #0078d4;
margin-bottom: 15px;
font-size: 1.5rem;
}
/* Connection panel */
.connection-panel {
background-color: white;
padding: 20px;
border-radius: 5px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.form-group {
margin-bottom: 15px;
}
label {
display: block;
margin-bottom: 5px;
font-weight: 500;
}
input[type="text"] {
width: 100%;
padding: 8px;
border: 1px solid #ddd;
border-radius: 4px;
font-size: 1rem;
}
button {
background-color: #0078d4;
color: white;
border: none;
padding: 10px 15px;
border-radius: 4px;
cursor: pointer;
font-size: 1rem;
transition: background-color 0.3s;
}
button:hover {
background-color: #005a9e;
}
#connection-status {
margin-top: 10px;
font-weight: 500;
}
.success {
color: #107c10;
}
.error {
color: #d83b01;
}
/* Visualization container */
.visualization-container {
background-color: white;
padding: 20px;
border-radius: 5px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.controls {
display: flex;
justify-content: space-between;
margin-bottom: 15px;
}
.search-box {
flex-grow: 1;
margin-left: 15px;
}
#graph-container {
width: 100%;
height: 600px;
border: 1px solid #ddd;
border-radius: 4px;
overflow: hidden;
}
/* Graph styles */
.node circle {
fill: #0078d4;
stroke: #fff;
stroke-width: 2px;
}
.node text {
font-size: 12px;
fill: #333;
}
.node.highlighted circle {
fill: #ffb900;
}
.node.selected circle {
fill: #107c10;
}
.link {
stroke: #999;
stroke-opacity: 0.6;
stroke-width: 1px;
}
.link.highlighted {
stroke: #ffb900;
stroke-opacity: 0.8;
stroke-width: 2px;
}
/* Measure details */
.measure-details {
background-color: white;
padding: 20px;
border-radius: 5px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
#measure-name {
font-size: 1.2rem;
font-weight: 600;
margin-bottom: 10px;
}
#measure-expression {
background-color: #f8f8f8;
padding: 15px;
border-radius: 4px;
border: 1px solid #ddd;
white-space: pre-wrap;
font-family: Consolas, Monaco, 'Andale Mono', monospace;
font-size: 0.9rem;
overflow-x: auto;
}
/* Tooltip */
.tooltip {
position: absolute;
background-color: rgba(0, 0, 0, 0.8);
color: white;
padding: 10px;
border-radius: 4px;
font-size: 12px;
max-width: 300px;
z-index: 10;
pointer-events: none;
}

121
static/js/app.js Normal file
View File

@ -0,0 +1,121 @@
/**
* Main application JavaScript for the Power BI Measure Call Graph
*/
// DOM elements
const serverInput = document.getElementById('server');
const databaseInput = document.getElementById('database');
const connectBtn = document.getElementById('connect-btn');
const connectionStatus = document.getElementById('connection-status');
const resetBtn = document.getElementById('reset-btn');
const searchInput = document.getElementById('search-input');
const measureName = document.getElementById('measure-name');
const measureExpression = document.getElementById('measure-expression');
// Graph instance
let graph = null;
// Event listeners
document.addEventListener('DOMContentLoaded', () => {
// Initialize the graph
graph = new Graph('#graph-container');
// Connect button
connectBtn.addEventListener('click', connectToModel);
// Reset button
resetBtn.addEventListener('click', () => {
if (graph) {
graph.resetView();
}
});
// Search input
searchInput.addEventListener('input', (e) => {
if (graph) {
graph.searchNodes(e.target.value);
}
});
});
/**
* Connect to the Analysis Services model
*/
async function connectToModel() {
const server = serverInput.value.trim() || 'localhost';
const database = databaseInput.value.trim();
if (!database) {
showConnectionStatus('Please enter a database name', 'error');
return;
}
try {
showConnectionStatus('Connecting...', '');
// Connect to the model
const connectResponse = await fetch('/connect', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ server, database })
});
const connectData = await connectResponse.json();
if (!connectData.success) {
showConnectionStatus(`Connection failed: ${connectData.message}`, 'error');
return;
}
showConnectionStatus('Connected successfully. Loading measures...', 'success');
// Get the call graph data
const graphResponse = await fetch('/get_call_graph');
const graphData = await graphResponse.json();
if (!graphData.success) {
showConnectionStatus(`Failed to load graph: ${graphData.message}`, 'error');
return;
}
// Initialize the graph with the data
graph.setData(graphData.graph);
graph.render();
showConnectionStatus('Graph loaded successfully', 'success');
} catch (error) {
showConnectionStatus(`Error: ${error.message}`, 'error');
}
}
/**
* Show connection status message
* @param {string} message - The message to display
* @param {string} type - The message type (success, error, or empty for neutral)
*/
function showConnectionStatus(message, type) {
connectionStatus.textContent = message;
connectionStatus.className = type;
}
/**
* Display measure details
* @param {Object} measure - The measure object
*/
function showMeasureDetails(measure) {
if (!measure) {
measureName.textContent = '';
measureExpression.textContent = '';
return;
}
measureName.textContent = measure.id;
measureExpression.textContent = measure.expression || 'No expression available';
}
// Export functions for use in graph.js
window.appFunctions = {
showMeasureDetails
};

277
static/js/graph.js Normal file
View File

@ -0,0 +1,277 @@
/**
* Graph visualization using D3.js for the Power BI Measure Call Graph
*/
class Graph {
/**
* Initialize the graph
* @param {string} selector - CSS selector for the container element
*/
constructor(selector) {
this.container = d3.select(selector);
this.width = this.container.node().getBoundingClientRect().width;
this.height = this.container.node().getBoundingClientRect().height;
this.data = null;
this.simulation = null;
this.svg = null;
this.zoom = null;
this.tooltip = null;
this.selectedNode = null;
this.init();
}
/**
* Initialize the SVG and D3 components
*/
init() {
// Create SVG
this.svg = this.container.append('svg')
.attr('width', this.width)
.attr('height', this.height)
.attr('class', 'graph-svg');
// Create zoom behavior
this.zoom = d3.zoom()
.scaleExtent([0.1, 4])
.on('zoom', (event) => {
this.g.attr('transform', event.transform);
});
// Apply zoom to SVG
this.svg.call(this.zoom);
// Create a group for the graph elements
this.g = this.svg.append('g');
// Create tooltip
this.tooltip = d3.select('body').append('div')
.attr('class', 'tooltip')
.style('opacity', 0);
// Handle window resize
window.addEventListener('resize', () => {
this.width = this.container.node().getBoundingClientRect().width;
this.height = this.container.node().getBoundingClientRect().height;
this.svg.attr('width', this.width).attr('height', this.height);
if (this.simulation) {
this.simulation.alpha(0.3).restart();
}
});
}
/**
* Set the graph data
* @param {Object} data - The graph data with nodes and links
*/
setData(data) {
this.data = data;
}
/**
* Render the graph
*/
render() {
if (!this.data) return;
// Clear previous graph
this.g.selectAll('*').remove();
// Create links
const links = this.g.append('g')
.attr('class', 'links')
.selectAll('line')
.data(this.data.links)
.enter().append('line')
.attr('class', 'link');
// Create nodes
const nodes = this.g.append('g')
.attr('class', 'nodes')
.selectAll('.node')
.data(this.data.nodes)
.enter().append('g')
.attr('class', 'node')
.call(d3.drag()
.on('start', this.dragStarted.bind(this))
.on('drag', this.dragged.bind(this))
.on('end', this.dragEnded.bind(this)));
// Add circles to nodes
nodes.append('circle')
.attr('r', 8);
// Add text labels to nodes
nodes.append('text')
.attr('dx', 12)
.attr('dy', '.35em')
.text(d => d.id);
// Add event listeners to nodes
nodes
.on('mouseover', (event, d) => {
// Show tooltip
this.tooltip.transition()
.duration(200)
.style('opacity', .9);
this.tooltip.html(d.expression)
.style('left', (event.pageX + 10) + 'px')
.style('top', (event.pageY - 28) + 'px');
})
.on('mouseout', () => {
// Hide tooltip
this.tooltip.transition()
.duration(500)
.style('opacity', 0);
})
.on('click', (event, d) => {
event.stopPropagation();
this.selectNode(d);
});
// Create simulation
this.simulation = d3.forceSimulation(this.data.nodes)
.force('link', d3.forceLink(this.data.links).id(d => d.id).distance(100))
.force('charge', d3.forceManyBody().strength(-300))
.force('center', d3.forceCenter(this.width / 2, this.height / 2))
.force('collision', d3.forceCollide().radius(30))
.on('tick', () => {
links
.attr('x1', d => d.source.x)
.attr('y1', d => d.source.y)
.attr('x2', d => d.target.x)
.attr('y2', d => d.target.y);
nodes.attr('transform', d => `translate(${d.x},${d.y})`);
});
// Add click handler to SVG to deselect nodes
this.svg.on('click', () => {
this.selectNode(null);
});
// Center the graph initially
this.resetView();
}
/**
* Handle drag start event
*/
dragStarted(event, d) {
if (!event.active) this.simulation.alphaTarget(0.3).restart();
d.fx = d.x;
d.fy = d.y;
}
/**
* Handle drag event
*/
dragged(event, d) {
d.fx = event.x;
d.fy = event.y;
}
/**
* Handle drag end event
*/
dragEnded(event, d) {
if (!event.active) this.simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
/**
* Select a node and highlight its connections
* @param {Object|null} node - The node to select, or null to deselect
*/
selectNode(node) {
this.selectedNode = node;
// Show measure details
if (window.appFunctions && window.appFunctions.showMeasureDetails) {
window.appFunctions.showMeasureDetails(node);
}
// Reset all nodes and links
this.g.selectAll('.node').classed('selected', false).classed('highlighted', false);
this.g.selectAll('.link').classed('highlighted', false);
if (!node) return;
// Get connected nodes
const connectedNodes = new Set();
const connectedLinks = new Set();
// Find incoming links (where this node is the target)
this.data.links.forEach(link => {
if (link.target.id === node.id) {
connectedNodes.add(link.source.id);
connectedLinks.add(link);
}
});
// Find outgoing links (where this node is the source)
this.data.links.forEach(link => {
if (link.source.id === node.id) {
connectedNodes.add(link.target.id);
connectedLinks.add(link);
}
});
// Highlight the selected node
this.g.selectAll('.node')
.filter(d => d.id === node.id)
.classed('selected', true);
// Highlight connected nodes
this.g.selectAll('.node')
.filter(d => connectedNodes.has(d.id))
.classed('highlighted', true);
// Highlight connected links
this.g.selectAll('.link')
.filter(d => connectedLinks.has(d))
.classed('highlighted', true);
}
/**
* Search for nodes by name
* @param {string} query - The search query
*/
searchNodes(query) {
if (!query) {
// Reset all nodes if query is empty
this.g.selectAll('.node').style('opacity', 1);
return;
}
const lowerQuery = query.toLowerCase();
// Filter nodes based on the query
this.g.selectAll('.node').style('opacity', d => {
return d.id.toLowerCase().includes(lowerQuery) ? 1 : 0.2;
});
}
/**
* Reset the view to center the graph
*/
resetView() {
const bounds = this.g.node().getBBox();
const dx = bounds.width;
const dy = bounds.height;
const x = bounds.x + dx / 2;
const y = bounds.y + dy / 2;
// Calculate the scale to fit the graph
const scale = 0.9 / Math.max(dx / this.width, dy / this.height);
const translate = [this.width / 2 - scale * x, this.height / 2 - scale * y];
// Apply the transform
this.svg.transition()
.duration(750)
.call(this.zoom.transform, d3.zoomIdentity
.translate(translate[0], translate[1])
.scale(scale));
}
}

51
templates/index.html Normal file
View File

@ -0,0 +1,51 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Power BI Measure Call Graph</title>
<link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
<!-- D3.js for visualization -->
<script src="https://d3js.org/d3.v7.min.js"></script>
</head>
<body>
<div class="container">
<header>
<h1>Power BI Measure Call Graph</h1>
</header>
<div class="connection-panel">
<h2>Connect to Analysis Services</h2>
<div class="form-group">
<label for="server">Server:</label>
<input type="text" id="server" placeholder="localhost">
</div>
<div class="form-group">
<label for="database">Database:</label>
<input type="text" id="database" placeholder="AdventureWorks">
</div>
<button id="connect-btn">Connect</button>
<div id="connection-status"></div>
</div>
<div class="visualization-container">
<div class="controls">
<button id="reset-btn">Reset View</button>
<div class="search-box">
<input type="text" id="search-input" placeholder="Search measures...">
</div>
</div>
<div id="graph-container"></div>
</div>
<div class="measure-details">
<h2>Measure Details</h2>
<div id="measure-name"></div>
<pre id="measure-expression"></pre>
</div>
</div>
<script src="{{ url_for('static', filename='js/graph.js') }}"></script>
<script src="{{ url_for('static', filename='js/app.js') }}"></script>
</body>
</html>